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Abstract—Fog computing aims at providing horizontal,
system-level, abstractions to distribute computing, storage,
control and networking functions closer to the user along a
cloud-to-thing continuum. Whilst fog computing is increas-
ingly recognized as the key paradigm at the foundation of
Consumer and Industrial Internet of Things (IoT), most of
the initiatives on fog computing focus on extending cloud
infrastructure. As a consequence, these infrastructure fall
short in addressing heterogeneity and resource constraints
characteristics of fog computing environments.

In this paper, we (1) explain the requirements of fog
computing infrastructure and how they extend well be-
yond those traditionally addressed by Cloud Computing
infrastructures; (2) introduce fog?5, a fog Infrastructure
that unifies computing, networking and storage fabrics
end-to-end, while addressing the challenges imposed by
resource heterogeneity, (3) explain the novel architectural
approach adopted by fog?5 to have a server-less data-
centric architecture that is scalable, secure, and highly
resilient to failures, (4) demonstrate the use of fog?5 in
some real-world use cases and (5) conclude and reports on
future works.

Index Terms—IIoT; Fog Computing; Edge Comput-
ing; MEC; Internet of Things; cyber-physical sys-
tems;virtualisation;IoT infrastructure;fog05;fog comput-
ing platform;function virtualization; platform-as-a-service
layer; Multi-Access Edge Computing;

I. INTRODUCTION

Early Internet of Things (IoT) applications adopted
cloud-centric architectures where information collected
from things is processed in a cloud infrastructure and
decisions are pushed back from the cloud to things.

While this architectural paradigm is suitable for a
subset of Consumer IoT (CIoT), it quickly shows its
limitation in the context of Industrial IoT (IIoT). More
specifically, the following assumptions, at the foundation
of cloud-centric architectures, are generally violated in
IIoT applications:

• Connectivity. Cloud-centric architectures assume
that things are sufficiently often connected. While
this is mostly true for IoT applications, it is far

from being the common case in IIoT applications.
As an example, autonomous agricultural vehicles,
or robots in a smart farm are often deployed in
locations with very poor connectivity.

• Latency. Cloud-centric architectures assume ap-
plications can tolerate the latency associated with
pushing data from things to the cloud, processing
information on the cloud and eventually sending
back some control information. This latency, is
orders of magnitude higher of the reaction times
required by several IIoT applications, such as, au-
tonomous vehicles, smart factories and smart grids.

• Throughput. Cloud-centric architectures assume
that the throughput required to push data from
things to the cloud may be massive when looking
at the aggregate traffic, but it is generally composed
by limited individual flows. In IIoT the situation is
quite different as, often, there are data flows with
high individual throughput and in several applica-
tions the aggregate volume is incredibly high. This
makes it unfeasible or not very effective to stream
this massive volumes of data to a data center.

• Cost of Connectivity. CIoT commonly assume that
the cost of connectivity is negligible. This stems
from the fact that consumer pays for connectivity –
either via their mobile data plan or their home inter-
net connection. In IIoT the situation is completely
different, it is the owner of the system that pays
for connectivity. This cost is non-negligible in ap-
plications with large number of data streams, such
as Smart Grids as well as for applications deployed
in remote areas such as oil exploitation rigs that
can only rely on expensive satellite communication
where 1MByte of data can cost as much as $8!

• Security. Cloud-centric architectures operate under
the assumption that end-users are comfortable in
giving away their data. While this may be true
for CIoT applications, the situation is completely



different in IIoT. Information is a strategic asset
which the vast majority of companies, operating in
an industrial, do not want to leave their premises.

Fog computing has emerged as an architectural ap-
proach to deal with the limitations exposed by cloud-
centric architectures in the context of IIoT applications.

A. Fog Computing

Early fog computing initiatives and demonstra-
tions [9], focused on enabling cloud-less architectures
by leveraging edge infrastructure. The main aim was
exploiting relatively capable edge infrastructure to bring
computing closer to were data was being produced and
control needed to be actuated. Things were left out
of the picture. In other terms we had moved from
a cloud-centric to an edge-centric architecture but not
necessarily toward an end-to-end solution. As a result,
mist-computing [5], [10] was evoked as the virtualisation
of computing, storage and communication resources on
things. Thus, for some time, instead of unifying the
perspective, the community was segregating around the
three tiers found in a typical CIoT and IIoT, in other
terms the cloud, the edge and the things.

The segregation was eventually resolved by the
OpenFog Consortium Architecture Working Group in
the vision paper [7], where the authors of this paper,
along with the key companies driving fog computing
agreed on the definition reported below.

Fog computing. A system-level architecture that
distributes computing, storage, control and networking
functions closer to the users along a cloud-to-thing
continuum [7]

In other terms, fog computing aims at addressing
the technological fragmentation existing today across
the cloud the edge and things, by providing a unifying
abstraction. This should sound completely logic as in
general CIoT and IIoT applications will span across the
three tiers and it would be ideal to have a unified set of
abstractions to manage them.

B. Multi-Access Edge Computing

While the IoT community was debating about the need
of fog computing, the telecommunication community
started working on the concept of Multi-Access Edge
Computing (MEC). Whilst MEC and fog computing
emerged from different communities the main problem
they try to solve is essentially the same, exception made
for few differences w.r.t. the application domain and the
induced constraints.

In other terms, MEC aims at providing unified
management across the cloud down to the network
edge. Fog computing, on the other end, expands down

to things. The other big difference, is that as fog
computing infrastructures have to deal with industrial
real-time applications. As such, their ability to manage
and virtualize resources in a real-time environments
is essential. Beside this differences, MEC and fog
computing share very similar requirements, this has
been acknowledged by the collaborations between ETSI
and the OpenFog Consortium, announced in September
2017, for driving the convergence.

In this paper we introduce fog?5 a fog computing
infrastructure that unifies compute, storage and
networking across cloud, edge and things. The reminder
of the paper is organized as follows. Section II
summarizes the state of the art and identifies the gaps
and the weakness intrinsic in the approach taken thus
far, i.e., that of reusing cloud-based infrastructures
for fog computing; Section III introduces fog?5, its
goals and its core abstractions; Section IV explains in
details the architecture of fog?5 and how it enables
security and decentralization; Section V describes the
uses cases for which fog?5 has been adopted and those
we are working on; finally in Section VI we draw the
conclusions and summarize future work.

II. STATE OF THE ART

The research and development on fog computing has
focused on adapting infrastructures conceived for cloud
computing, such as the OpenStack, to fog computing.
For instance, in [4] an OpenStack based infrastructure
is proposed to serve as a fog layer for smart cities. In
[8], the authors identify some of the limitations induced
by OpenStack’s centralized architecture and propose
the use of a distributed key value store to eliminate
the dependency on a centralized database. While these
contributions are on the right track toward enabling fog
computing, they are biased toward virtualizing the edge
infrastructure as opposed to providing an end-to-end
solution that can virtualize, manage and operate from
the cloud to the thing while addressing the heterogeneity
specific to fog computing.

In the reminder of this section we present a summary
of the key architectural aspects of OpenStack. Then, we
motivate the need for a different solution by showcasing
how OpenStack fails in addressing the key requirements
of fog-computing.

A. OpenStack Overview

OpenStack adopts a modular service-oriented architec-
ture, where each component provides a service to other
components. Only a minimal set of services is required
in order to run a minimal OpenStack deployment, these
are:



Requirement OpenStack Fog Computing Platform

Dynamic discovery of new hosts/devices/VIM no yes
Discovery of specific HW and I/O the devices no yes

Decentralized Architecture no yes
Low Latency no yes

Low Resource Utilisation no yes
Generalized Constraint-based Deployment no yes

Devices assignment to entities PCI Only yes
Support for resource constrained devices no yes

Unification of computing, networking and storage end-to-end no yes
Large scale deployment complex simple

Extensibility partial plugin architecture full plugin architecture
Support for Real-Time OS no yes

TABLE I
FOG COMPUTING REQUIREMENTS

• Horizon. This component provides a web dash-
board used to interact with OpenStack.

• Nova. This component provides the virtualisation
layer and controls the instantiation of VMs and
Linux Containers (Nova-LXC). Nova is is com-
posed by a number of sub-components usually
installed in different machines, the most important
of these being:

– nova-compute. Enables the communication
with the underlying hypervisor.

– nova-api. Provides a RESTful API for access-
ing the nova service.

– Advanced Message Queueing Protocol
(AMQP) MessageQueue. Provides the RPC
mechanism used inside nova.

These services rely on a database for storing state
information about VMs and a RabbitMQ server for
providing the AMQP message queue.

• Glance. This service is responsible for storing
images. It is in charge of the creation of VMs’
virtual drives and for managing base images used
to provision the VMs. It uses a database to store
information about virtual disks and images. It also
provide a RESTful API for interaction.

• Neutron. This component provides the provisioning
of networks, for virtual (overlay networks) and
physical networks. Neutron exposes a RESTful API
for interacting with other components and external
world. For internal communication it uses an RPC
mechanism based on AMQP. Finally, it relies on
a database to store information about the network
state.

• KeyStone. It provides the identity service used by
components for authentication. It also exposes a
RESTful API to interact with other services as well
as external components.

In summary, all of these components use (1) a REST-
ful API for external or inter-component communication,
(2) an AMQP based RPC for inter-component communi-

cation, and (3) a data-base for storing component related
state.

The minimal OpenStack deployment requires two
servers hosting the following services:

• Controller Node
– SQL Server Database
– RabbitMQ Server
– HTTP Server
– Keystone
– Glance
– Nova
– Neutron
– Horizon

• Compute Node
– Nova with nova-compute
– Neutron

B. Fog Computing Requirements

From the list above, it emerges how OpenStack has a
clear client-server architecture with dependencies toward
centralized services such as the AMQP broker and the
database. From the list of services required for the
minimal deployment, it also follows that a minimal
installation requires relatively resourceful hardware.

This is a consequence of the fact that OpenStack
was designed for resourceful, symmetric and relatively
static environments such as data centers. A typical fog
deployment is rather the opposite as (1) nodes may not
be extremely resourceful, (2) the system is highly asym-
metric w.r.t. computational and connectivity capabilities,
and (3) nodes have a high degree of churn which beside
from failures and intermittent connectivity stems from
mobility – consider for instance autonomous driving
vehicles in a factory.

Another key characteristic of fog environments is the
need for supporting low reaction times, as well as the
provisioning, in addition to VM and containers, of differ-
ent kinds of deployable units, such as unikernels, micro-
services, and binary executables, some of which may



need to run on real-time operating systems and leverage
real-time networks such as Time Sensitive Networking
(TSN) (IEEE 802.1) [11].

OpenStack, operates at a time scale that is incom-
patible with these kinds of systems. As an example the
instantiation of a unikernel is dominated by OpenStack
as opposed to the unikernel boot time. This clearly
offsets the advantage of using unikernels for fast boot.

Table I summarizes some of the key requirements
of a fog infrastructure and evaluates their support in
OpenStack. From this table it emerges that OpenStack
is ill-suited as the starting point for fog infrastructures.

III. FOG?5 OVERVIEW

As described in the previous sections, the fog in-
frastructures proposed thus far in literature [3], [6],
[9], [12], while being a step in the right direction,
fall short in addressing the end-to-end unification of
resources. The main limitations of previous solutions can
be summarized as (1) deployment limited mostly to VM
and/or Containers, (2) lack of support for real-time, (3)
lack of mudularity with consequences on extensibility,
and (4) limited security.

fog?5 defines a set of abstractions to unify the com-
pute, storage and communication fabric end-to-end and
thus allow applications to be managed, monitored and
orchestrated across the cloud to thing continuum.

Before delving into the architectural details of
fog?5 let’s see the key abstraction that it uses in order to
provision, manage and orchestrate, generic applications
end-to-end.

Fig. 1. fog?5 unified abstraction

A. fog?5 Entity
The abstraction used by fog?5 to provision, manage

and orchestrate applications, or network functions, is
the entity. An fog?5entity is either an atomic entity,

such as a Virtual Machine, a container, a Unikernel, a
binary executable, or a Directed Acyclic Graph (DAG) of
entities (see Figure 1). Where the set of atomic entities
supported by fog?5 can be extended through plugins.

Entities and Atomic Entities have a FSM that defines
the legal state transitions. These FSM have been defined
to be sufficiently generic to encompass essentially any
kind of atomic entity ranging from a VM to a binary
executable. Entities may define a deployment affinity
w.r.t. to each other as well as with respect to compute,
storage, I/O and accelerators such GPUs and FPGAs.

The state machines that define the legal state tran-
sitions for entities and atomic entities are depicted in
Figure 2a and and Figure 2b respectively.

As shown in Figure 2b, the statuses of an atomic
entity are distinguished from those of an instance of
an atmic entity. This is similar to the difference be-
tween the Virtual Network Function (VNF) Descriptor
(VNFD) and theVNF Record (VNFR), were the first
represents the template and the latter instance for that
template. fog?5 also provides an implementation for
the ETSI VNF Managment and Orchestration (MANO)
framework. Additional MANO can be supported by
implementing a plugin.

In Figure 2a it can also be seen how entities have a
FSM describing their legal state transitions. Each entity
is described as a DAG of atomic entities or entities.
The DAG defines a partial order indicating the start-up
dependencies. Additionally, an entity affinity graph can
be defined to provide hints concerning the entities that
need to be close to each other.

B. fog?5 Resources
fog?5 uses resources, expressed as URI, to represent

everything in the system. For instance, a node is a
resource, as is a resource a FPGA or a specific GPIO
available on that node, a fieldbus interface, and so on.
Resources are organized as a tree whose root indicates
the administrative domain. The syntax used for resources
is reported below:
<a | d>f o s : / / < sys t em id >/<node id >/< t y p e o f r e s o u r c e>

/< i d o f r e s o u r c e >/< t y p e o f s u b r e s o u r c e>
/< i d o f s u b r e s o u r c e>
/ . . . [ ’ ? ’ que ry ] [ ’ # ’ f r a g m e n t ]

In the URI it is possible to have wildcards, query and
fragments. Sub-resources can be nested, some types of
resources and sub-resources are reserved and used by the
fog?5 agent

Two types of wildcards are allowed:
• * to indicate an arbitrary sub-path of length 1.
• ** to indicate a sub-path of arbitrary length.
URI fragments are used to represent delta-updates to

the value of a resource. Queries are used to retrieve
resources matching a given predicate.



UNDEFINED DEFINED
define()

undefine()

CONFIGURED
configure()

clean()
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start()
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pause()

resume()

scale()

shutdown()

Entity Entity Instance

UNDEFINED DEFINED
define()

undefine()

CONFIGURED

onConfigure()configure()

onClean()
clean()

RUNNING
PAUSED

SCALING
onPause()

onStop()

start()

stop()

onStart()

onResume()

pause()resume() scale()

MIGRATING

migrate()

TAKING_OFF LANDING

shutdown()

Atomic Entity
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Fig. 2. Finite State Machine (FSM) for entities (a) and atomic entities (b).

Each resource in the system has conceptually two
values, the actual value and the desired value. These
values are maintained on two separate distributed key
value stores. The actual state can only be changed by the
owner of the resource, while the desired value is used
to request changes to the actual value. This technique
allow us to have concurrency only on the desired value
of a resource, but never its actual actual value. As a
single writer exist for the actual value it can take care of
serializing writes on the information that represents the
actual state of the system.

C. fog?5 Distributed Key/Value Store

As mentioned in the previous section, everything in
fog?5 is a resource and all resources are stored in a dis-
tributed key value store. This store provides an eventual
consistency semantics and has built-in versioning.

The store, as explained in more detail in next the
sections, has a root, a home and a cache capacity. The
root and the home are URI indicating respectively the
scope of resolution for the store and the resources to
be maintained in main memory. In other terms, a store
will keep in main memory any resource that has home
as a prefix, and will store on a fixed capacity cache
resources whose prefix is the root but not the home.
Resources that are not found in the store are resolved
using a distributed cache miss protocol. A distributed
cache coherency protocol is used to ensure eventual
consistency of cached resources.

This abstraction allow to bound the amount of memory
used by a node while at the same time access a virtual
memory/storage that is distributed and potentially as bit
as the sum of all memory/storage in the system. This

abstraction along to being used at the core of fog?5 is
provided to the user as a way to virtualizing memory
and storage end-to-end.

As a result this store can be used as a single and
scalable abstraction across high-end and extremely con-
strained nodes.

The distributed store can also be used for sharing
information that may be useful for other application, as
an example veNB may share Radio Network information
though the distributed store, thus allowing other appli-
cations and services to take decisions based on real-time
data.

The store while providing a high-level abstraction has
been implemented to have extremely low latency. As
such it facilitates interaction between different services
and allows for extremely short reaction times.

IV. FOG?5 DISTRIBUTED ARCHITECTURE

The high-level architecture of fog?5 is depicted in
Figure 3. From Figure 3 it can be seen how fog?5 has
been designed to run as either a process on a traditional
OS or as a trusted service inside a Trusted Execution
Environment (TEE). Where the TEE could be running
on an hypervisor – as depicted in Figure 3 – or on bare
metal, ideally on a trust zone such as those supported
by ARM processors. This deployment ensure that all
communications with the external network are done
through a run-time that has a very small surface of attack.
Internal communication is performed through a VPN.

This means that only the software running on the
TEE can communicate with the external network, which,
as such mediates communication between the internal
and external network. This architecture, while not com-
pulsory – as mentioned above – was motivated by the
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Fig. 3. fog?5 high-level architecture.

fact that regular operating systems, such as Linux and
Windows, have an extremely large surface of attack,
which makes them extremely hard to secure. Finally, the
fog?5 instance running on the TEE has only the plugins
for managing the network and the hypervisor, along with
a trusted implementation of the distributed store.

A. fog?5 Agent
The core component of fog?5 is the agent. The agent

represents a manageable resource on the system, which
from now on we’ll call a fog?5 node. Each agent has
two stores, one representing the actual state of the node
and the other representing the desired state for the node.
The actual state of a node can only be written by the
agent running on that node, while the desired state can
be written by anybody to cause state transitions, such as
provisioning a VM, or a binary executable, and so on.

Agents dynamically discover each other by leveraging
the dynamic discovery provided by the distributed store,
which in turn leverage the dynamic discovery provided
by the data sharing layer which may be implemented via
Data Distribution Service (DDS) [1] or zenoh [2].

The set of functionalities supported by an agent is
controlled by plug-ins. Different class of plug-ins exist
for entities, network, OS, and so on. The agent ”simply”
orchestrates the plug-ins state transitions.

B. fog?5 Plugins
As mentioned above, fog?5 leverages plugins to

manage just about anything. If we take as an example
the plug-in for atomic entities, these are responsible for
implementing the state transition depicted in Figure 2 for
a specific kind of deployment, unit, such as a Robotic
Operating System (ROS) nodelet, a unikernel, a binary
executable, a container or a VM. As another example,
operating system plugin, provides an implementation of
the primitives required by fog?5 to operate on the given
OS.

C. fog?5 Distributed Store
fog?5’s distributed store, is a distributed

< key, V alue > store whose protocol has been

implemented leveraging DDS or alternatively
zenoh. Both DDS and zenoh, promote decentralized
architectures and do not require a broker. Additionally,
they have extremely low latency, high throughput and
excellent scalability.

fog?5’s distributed store exposed the following simple
but extremely poweful API:

• keys(path) list the keys under the given path.
• get(k) get the resource for the given key, resolving a

miss if necessary.
• put(k,v) store the information v using k as key.
• dput(k,[v]) update the information for the key.
• pput(k,v) persistent put, these stores the ¡k,v¿ on a

stable storage.
• getAll(k) same as get(k) but k contains wildcards,

resolving a miss if necessary.
• remove(k) remove the information associated to the

key
• observe(k, action) register an observer for the specified

key, each time the value is update the action is
called

• reg metares(k, action) registers a meta-resource and the
action that resolves it.

• unobserve(k) remove the registered observer.
The store also supports a versioning system to allow

for (1) rollbacks in case of errors, (2) node with intermit-
tent connectivity to be updated with latest version, and
(3) dealing with cache miss and eventual consistency.

Finally, it should be remarked that registering an ob-
server for a URI owned by another node (store) provide
an elegant way of monitoring resources.

D. fog?5 and Fog Computing Requirements
Now that we have provided an overview of fog?5, it

is time to review how it addresses the key fog-computing
requirements listed in Table I:

• Dynamic Discovery. fog?5 dynamic discovery
is provided by the distributed store, which in in
turns, leverages the dynamic discovery provided
by DDS or by zenoh. This dynamic discovery is
implemented by decentralized algorithms that do
not introduce dependencies on servers and facilitate
zero-conf deployments.

• HW and I/O Discovery. fog?5 provides informa-
tion on any kind of I/O and hardware accelerators
available on the node. This information is managed
by plugins and can be extended to provide access to
standard API for dealing with embedded hardware
and I/O such as the SGET eAPI.

• Decentralized Architecture. fog?5 has a decen-
tralized architecture as a consequence of the decen-
tralized key/value store used at its foundation.

• Low Latency. As the distributed key/value store is
implemented using either DDS or zenoh, the latency



for distributing data on a LAN, is around 50 micro-
seconds when using DDS and around 20 micro-
seconds when using zenoh.

• Low Resource Utilization. The fog?5 agent takes
around 3MB of memory on a 64-bit machine run-
ning Linux. This is for a fully functional agent
with no additional external dependency. Notice also
that, as the architecture is decentralized, there is
nothing else beside the fog?5 agent that needs to
be deployed.

• Generalized Constraint-based Deployment.
fog?5 uses a plug-in for allocation. The default,
plugin takes into account computational resources,
networking, I/O accelerators as well as affinities
with respect to other entities.

• Device Assignments. fog?5 can assign any kind of
device or I/O, such as a GPIO to an atomic entity.

• Support for Constrained Devices. The term con-
strained devices may mean different things to dif-
ferent people. It should be clear from the number
provided above that something like a Raspberry
Pi is not a constrained target for us. We are able
to target ARM-M and even less capable hardware,
such as micro-controllers.

• End-to-end Unification of Computing, Network-
ing and Storage. As fog?5 can run efficiently on
high-end hardware as well as constrained things,
it can manage the compute, storage and network-
ing fabric end-to-end. Additionally, fog?5 provides
with the ability to configure end-to-end networks
that span across cloud, edge and things.

• Large Scale Deployment. Thanks to the dynamic
discovery, large scale deployments are is simple
and effective. The scalability of these deployments
stems for the use of DDS and its dedicated infras-
tructure for large scale-deployments.

• Extensibility. fog?5 has a plugin architecture that
allows for any aspect to be extended and cus-
tomized.

• Support for Real-Time OS. At the present time,
fog?5 can provision real-time OS and we are
actively working on supporting TSN provisioning
and management.

V. FOG05 REAL-WORLD USE CASES

fog?5 is currently being used in R&D laboratories
around the world, such as ITRI, UC3M, III and NCTU,
for applications ranging from 5G VNF in heterogeneous
environments to deployment and orchestration of com-
plex services inside a smart factory to enable on-demand
manufacturing.

In these applications fog?5 is deployed on extremely
different hardware platforms spanning from servers to
Raspberry Pis and lego mindstorms!

We are also starting to work on service provisioning
for V2X or V2V communication and collisions avoid-
ance among swarm of vehicles. In general, fog?5 has
proven quite effective in enabling resource virtualisation
and harvesting across a wide range of devices.

In the reminder of this section we describe a use case
that has been driven by our robotics business unit.

A. Connected Robots
In the near future, general purpose robots will be used

in factories to accomplish a wide range of tasks through
reconfiguration achieved by simply deploying a differ-
ent control logic. Flexible provisioning of robot tasks,
within a swarm of robots, requires dynamic discovery
of available robots along with the discovery of their
computational, I/O and manipulation capabilities.

Fog computing infrastructures matches well the re-
quirements of next generation robotic applications with
respect to their needs for dynamic provisioning, compu-
tational harvesting, minimal communication latency and
jitter.

B. fog?5 in Robotics Applications
fog?5 is used today to provision, deploy and manage

the components of a complex robotic control application,
and dynamiucally decide the most suitable target among
those spanning from the cloud to robot. For instance,
fog?5 may decide to deploy analytics on the cloud or
on edge nodes, while the control logic may deployed and
migrated so to remain close the robot or perhaps directly
on the robot.

As an example, one of our Business Units is using
fog?5 for provisioning, deploying and managing the
network as well as the applications required in swarm
robotics applications. In one of these applications, a
robot equipped with a stereoscopic camera, has to follow
another robot. The logic controlling the follower robot is
deployed on edge servers and live migrated as the robot
moves to minimize network latency and jitter.

In this specific a scenario the hardware platform is
composed by:

• Two Edge Servers, one of which has a GPU accel-
erator

• One RaspberryPi3 with an extra 802.11ac NIC
• One Robot using Robotic Operating System v2

(ROS2), ADLINK Neuron board, a stereoscopic
camera, a set of motors to more around

• One Robot using ROS2, ADLINK Neuron board, a
set of motors to move around

All robots have some computational power, multi-
ple NICs and I/O interfaces. Each device runs the
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fog?5 agent and has a NIC connected to the manage-
ment.

The application is composed by:
• Complex Robot control application
• Analytics application
• Virtual Access Point VNF
• Gateway VNF
• Image recognition client
• Simple robot control logic
• Simple robot client
• Monitoring application
Each entity has different requirements in terms of I/O,

compute, accelerators and networking requirements.
The application components are extremely heteroge-

neous. The analytics, monitoring, and robot controlling
applications are packaged in VMs, the gateway VNF and
the Access Point VNF are LXD containers, the other are
ROS2 Nodelets

fog?5 greatly facilitates the provisioning, deployment
and management tasks as it dynamically discovers avail-
able nodes and deploys the components of this complex
application in the right place – where the right place
depends on resources and affinity. To maintain affinity
between some entities it also executes live migration of
some components.

Additionally, fog?5 is also used to create an overlay
network used by all components on the application.

VI. CONCLUSION AND FUTURE WORKS

This paper has provided an overview on the evolution
of fog computing and summarized the key requirements
that fog computing platforms need to address. These
requirements highlight how, the main stream approach of
adapting cloud-derived technologies such as OpenStack
fall short in addressing the most important characteristics
of fog computing environments.

The paper has thus introduced fog?5 a novel fog
computing infrastructure designed bottom up to address
the key requirements of fog computing. fog?5 features

a decentralized and plug-in-based architecture that allow
for zero-conf deployment, low-latency, and extensibility.

Our future work will focus on extending the appli-
cability of fog?5 to micro-controllers and providing
consolidation and placement algorithms that perform
dynamic resource optimization.

Finally, fog?5 is available as Open Source at
http//fog05.io.

We also working with the OpenFog consortium to
make fog?5 the Open Source reference implementation
for the OpenFog Consortium.

REFERENCES

[1] The data distribution service, 2017.
[2] zenoh: The zero network overhead protocol, 2017.
[3] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Adde-

palli. Fog computing and its role in the internet of things. In
Proceedings of the First Edition of the MCC Workshop on Mobile
Cloud Computing, MCC ’12, pages 13–16, New York, NY, USA,
2012. ACM.

[4] D. Bruneo, S. Distefano, F. Longo, G. Merlino, A. Puliafito,
V. D’Amico, M. Sapienza, and G. Torrisi. Stack4things as a
fog computing platform for smart city applications. In 2016
IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS), pages 848–853, April 2016.

[5] Angelo Corsaro. Cloudy, foggy and misty internet of things. In
Proceedings of the 7th ACM/SPEC on International Conference
on Performance Engineering, ICPE ’16, pages 261–261, New
York, NY, USA, 2016. ACM.

[6] S. K. Datta, C. Bonnet, and J. Haerri. Fog computing architecture
to enable consumer centric internet of things services. In 2015
International Symposium on Consumer Electronics (ISCE), pages
1–2, June 2015.

[7] OpenFog Consortium Architecture Working Group. Openfog
architecture overview. Technical report, Feb 2016.

[8] Adrien Lebre, Jonathan Pastor, Anthony Simonet, and Frédéric
Desprez. Revising OpenStack to Operate Fog/Edge Computing
infrastructures. In IEEE International Conference on Cloud
Engineering, Vancouver, France, April 2017.

[9] et al. M. Yannuzzi. A new era for cities with fog computing.
IEEE Internet Computing, 21(2):54–67, Mar.-Apr. 2017.

[10] J. S. Preden, K. Tammeme, A. Jantsch, M. Leier, A. Riid, and
E. Calis. The benefits of self-awareness and attention in fog and
mist computing. Computer, 48(7):37–45, July 2015.

[11] Seifeddine Nsaibi und Ludwig Leurs. Time sensitive networking.
atp edition, 58(10):40–47, 2016.

[12] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing:
Concepts, applications and issues. In Proceedings of the 2015
Workshop on Mobile Big Data, Mobidata ’15, pages 37–42, New
York, NY, USA, 2015. ACM.

View publication statsView publication stats

https://www.researchgate.net/publication/326507665

